Sains Malaysiana 52(11)(2023): 3091-3102
http://doi.org/10.17576/jsm-2023-5211-06
The Effects of Light and a
Combination of Growth Regulators on the Induction of Somatic Embryogenesis in Orchid Rhynchostylis gigantea (LindI.) Ridl.
(Kesan Cahaya dan Gabungan Pengawalatur Pertumbuhan terhadap Induksi Embriogenesis Somatik pada Orkid Rhynchostylis gigantea (LindI.) Ridl.)
SRI RIANAWATI1,*,
DASUMIATI2, NUR AMELIA RAHMI2, RIDHO KURNIATI1 & ENUNG SRI MULYANINGSIH3
1Research Center for Horticultural and Estate Crops, National Research
and Innovation Agency (BRIN). Jalan Raya Bogor Km.
46, Cibinong 16911, Jawa Barat, Indonesia
2Departement of Biology, UIN Syarif Hidayatullah, JalanIr. H. Djuanda No.
95, Ciputat, Tangerang Selatan, 15412, Banten, Indonesia
3Research Center for Genetic Engineering,
National Research and Innovation Agency (BRIN), Jalan Raya Bogor Km. 46, Cibinong 16911, Jawa Barat,
Indonesia
Received: 13 December 2022/Accepted: 6 November 2023
Abstract
The squirrel-tail orchid (Rhynchostylis gigantea) belongs to the Orchidaceae family. This orchid is indigenous to Southeast
Asia and is scented and arranged in a bouquet of dangling stems. Its uniqueness
makes it commercially desirable. In vitro culture has been utilized for
orchid proliferation for a very long time to aid in the development of orchid
seedlings. However, not all orchid species react the same way. Through somatic
embryogenesis without gamete fusion, in vitro culture techniques can
produce new plants during the entire embryonic phase. Endogenous and exogenous
hormones, as well as light, influence the success of embryogenesis. Determining
the optimal environmental parameters (light, combination and concentration of
growth regulators, and their interaction) for inducing somatic embryogenesis
from leaf explants in R. gigantea is the
purpose of the present study. The leaves of R. gigantea clone 19 were utilized as explants in this investigation, utilizing a
completely random factorial design. The first factor is a combination of growth
regulator types and concentrations, and the second factor is light. Explants
that are alive and growing at a rapid rate indicate that the in vitro culture
is successful. Light and the combination of growth regulators significantly
affected the percentage of viable explants, the beginning date of callus
formation, and the number of embryogenic calluses produced. The interaction of
two components (light and a combination of growth regulators) did not affect the
three characteristics, with the exception of the proportion of somatic
embryogenesis. Incubation in the dark is the optimal environment for initiating
somatic embryogenesis in explants. The optimal combination of plant growth
regulators for inducing somatic embryogenesis was 0.5 mgL-1 TDZ and
0.1 mgL-1 BAP. Bright light and a concentration of 1.0 mgL-1 TDZ + 0.1 mgL-1 BAP were the optimal interaction conditions for the
induction of somatic embryogenesis in R. gigantea.
Keywords: Dark; light; Rhynchostylis gigantea; somatic embryo
Abstrak
Orkid Rhynchostylis gigantea ialah ahli famili Orchidaceae Orkid ini berasal dari Asia Tenggara, wangi dan tersusun dalam sejambak batang berjuntai. Keunikan menjadikan item itu diingini secara komersial. Kultur in vitro telah digunakan untuk pembiakan orkid untuk masa yang sangat lama untuk membantu dalam pembangunan anak benih orkid. Walau bagaimanapun, tidak semua spesies orkid bertindak balas dengan cara yang sama. Melalui embriogenesis somatik tanpa gabungan gamet, teknik kultur in vitro boleh menghasilkan tumbuhan baharu semasa keseluruhan fasa embrio. Hormon endogen dan eksogen, serta cahaya, mempengaruhi kejayaan embriogenesis. Menentukan parameter persekitaran optimum (cahaya, gabungan dan kepekatan pengawalatur pertumbuhan dan interaksinya) untuk mendorong embriogenesis somatik daripada eksplan daun dalam R. gigantea adalah tujuan kajian ini. Daun klon R. gigantea 19 telah digunakan sebagai eksplan dalam kajian ini, menggunakan reka bentuk faktorial rawak sepenuhnya. Faktor pertama ialah gabungan jenis dan kepekatan pengawalatur pertumbuhan dan faktor kedua ialah cahaya. Eksplan yang hidup dan berkembang pada kadar yang cepat menunjukkan bahawa kultur in vitro berjaya. Faktor cahaya dan gabungan pengawalatur pertumbuhan memberi kesan ketara kepada peratusan eksplan yang berdaya maju, masa permulaan kalus dan bahagian kalus embriogenik yang dihasilkan. Interaksi dua komponen (cahaya dan gabungan pengawalatur pertumbuhan) tidak mempunyai kesan ke atas ketiga-tiga ciri ini, dengan pengecualian bahagian embriogenesis somatik. Pengeraman dalam gelap adalah persekitaran yang optimum untuk memulakan embriogenesis somatik dalam eksplan. Gabungan optimum pengawalatur pertumbuhan tumbuhan untuk mendorong embriogenesis somatik ialah 0.5 mgL-1 TDZ dan 0.1 mgL-1 BAP. Cahaya terang dan kepekatan 1.0 mgL-1 TDZ + 0.1 mgL-1 BAP adalah keadaan interaksi optimum untuk induksi embriogenesis somatik dalam R. gigantea.
Kata kunci: Embrio somatik; gelap; Rhynchostylis gigantea; terang
REFERENCES
Almeida, V.,
de Freitas Fraga, P., Bachiega,
H., Navarro, B., Guerra, M.P. & Pescador, R.
2017. Dynamics in global DNA methylation and endogenous polyamine levels during protocorm-like bodies induction of Cattleya tigrina A.
Richard. Acta Scientiarum. Biol. Sci. 39(4): 497-505. https://doi.org/10.4025/actascibiolsci.
v39i4.36656
Chen, J.T.
& Chang, W.C. 2004. Induction of repetitive embryogenesis from seed-derived protocorms of Phalaenopsis amabilis var. Formosa shimadzu. In Vitro Cellular and Developmental
Biology - Plant 40(3): 290-293. https://doi.org/10.1079/IVP2003527
Chen, Y.M.,
Huang, J.Z., Hou, T.W. & Pan, I.C. 2019. Effects
of light intensity and plant growth regulators on callus proliferation and
shoot regeneration in the ornamental succulent Haworthia. Botanical Studies 60(1). https://doi.org/10.1186/s40529-019-0257-y
Chen, J.T.
& Chang, W.C. 2006. Direct somatic
embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biologia Plantarum 50: 169-173,
Chhabra, G.,
Chaudhary, D., Varma, M., Sainger, M. & Jaiwal, P.K. 2008. TDZ-induced direct shoot organogenesis
and somatic embryogenesis on cotyledonary node
explants of lentil (Lens culinaris Medik.). Physiology and Molecular Biology of Plants 14(4): 347-353. https://doi.org/10.1007/s12298-008-0033-z
Comber, J.B. 1990. Orchids of Java. Royal Bot. Garden Kew. p. 407.
Guo, G. & Jeong, B.R. 2021. Explant, medium, and plant growth
regulator (PGR) affect induction and proliferation of callus in Abies koreana. Forests 2021(12): 1388. https://doi.org/10.3390/f12101388
Hoesen, D.SH., Witjaksono, W & Sukamto, L. 2008. Callus induction and organogenesis of in vitro culture Dendrobium liniale Rolfe. Berita Biologi 9(3): 333-341.
Hong, P.I.,
Chen, J.T. & Chang, W.C. 2010. Shoot development and plant regeneration
from protocorm-like bodies of Zygopetalum mackayi. In Vitro Cellular and Developmental
Biology - Plant 46(3): 306-311. https://doi.org/10.1007/s11627-009-9262-2
Jang, E.B., Ho, T.T. &
Park, S.Y. 2020. Effect of light quality and tissue origin on phenolic compound
accumulation and antioxidant activity in Camellia japonica calli. In vitro Cell. Dev. Biol.-Plant 56: 567-577.
https://doi.org/10.1007/s11627-020-10121-9
Kaewkhiew, P. & Kaewduangta, W. 2010. Natural additives modification
medium: Growth of Rhynchostylis gigantea by tissue culture technique. Asian Journal
of Plant Sciences 9(8): 498-501. https://doi.org/10.3923/ajps.2010.498.501
Khotskova, L.V., Stepanyuk, G.Y., Yamburov, M.S., Astafurova, T.P. & Turanov,
S.B. 2018. The influence of light spectrum on morphogenesis of orchid germs in
vitro. IOP Conf. Series: Materials Science and Engineering 510(1):
012032. doi:10.1088/1757-899X/510/1/012032
Li, Z.Y.
& Xu, L. 2009. In vitro propagation of white-flower mutant of Rhynchostylis gigantea(Lindl.) Ridl. through immature
seed-derived protocorm-like bodies. Journal of
Horticulture and Forestry 1(6): 93-97.
Liang, H., Xiong, Y., Guo, B., Yan, H.,
Jian, S., Ren, H., Zhang, X., Li, Y., Zeng, S., Wu, K., Zheng, F., Teixeira da
Silva, J.A., Xiong, Y. & Ma, G. 2020. Shoot
organogenesis and somatic embryogenesis from leaf and root explants of Scaevola sericea. Scientific
Reports 10(1): 1-11. https://doi.org/10.1038/s41598-020-68084-1
Ma, G., He,
C., Ren, H., Zhang, Q., Li, S., Zhang, X. & Eric, B. 2010. Direct somatic
embryogenesis and shoot organogenesis from leaf explants of Primulina tabacum. Biologi Plantarium 54(2): 361-365.
https://doi.org/10.1007/s11240-011-0087-4
Manokari, M., Latha, R. & Shekhawat. 2021. Effect of activated charcoal and phytohormones to improve in vitro regeneration in Vanda tesselata (Roxb) Hook.
Ex G. Don. Vegetos 34:
383-389. DOI:10.1007/S42535-021-00196-Z
Moradi, S., Daylami, S.D., Arab, M. & Vahdati,
K. 2017. Direct somatic embryogenesis in Epipactis veratrifolia, a temperate terrestrial orchid. Journal
of Horticultural Science and Biotechnology 92(1): 88-97.
https://doi.org/10.1080/14620316.2016.1228434
Mose, W., Daryono, B.S., Indrianto, A., Purwantoro, A. & Semiarti, E.
2020. Direct somatic embryogenesis and regeneration of an Indonesian orchid Phalaenopsis amabilis (L.) Blume under a variety of plant growth regulators, light regime, and
organic substances. Jordan Journal of Biological Sciences 13(4):
509-518.
Mose, W., Indrianto, A., Purwantoro, A.
& Semiarti, E. 2017. The influence of Thidiazuron on direct somatic embryo formation from various
types of explant in Phalaenopsis amabilis (L.) Blume orchid. HAYATI Journal of
Biosciences 24(4): 201-205. https://doi.org/10.1016/j.hjb.2017.11.005
Neera, S. & Boungphengphanh, D. 2016. Potential of common chemical
fertilizers for micropropagation of Rhynchostylis gigantea (Lindl) Ridl. Acta Horticulturae 11(13): 73-77. https://doi.org/10.17660/ActaHortic.2016.1113.10
Novak, S.D.,
Luna, L.J. & Gamage, R.N. 2014. Role of auxin in
orchid development. Plant Signaling & Behavior 9(10): e972277. DOI:
10.4161/psb.32169
Obsuwan, K., Yoodee, S. & Uthairatanakij,
A. 2010. Application of chitosan on in vitro growth of Rhynchostylis gigantea protocorms and seedlings. Acta Horticulturae 878: 283-288.
https://doi.org/10.17660/ActaHortic.2010.878.35
Popilia, I., Linalatil, F.K. & Devi Rohmah,
M. 2021. Induction shoots of black pomegranate (Punica granatum L.) seed explant using Thidiazuron and kinetin hormone in vitro. El- Hayah Jurnal Biologi 8(3): 87-95. https://doi.org/10.18860/elha.v8i3.13538
Prasongsom, S., Thammasiri, K. & Chuenboonngarm,
N. 2014. Micropropagation of Rhynchostylis gigantea var. Rubra through protocorm-like bodies. Acta Hort. 1025: 215-222.
Parthibhan, S., Venkateswara, M., Rao, M., Taxiera da Silva, J.A. & Kumar, T.S. 2018. Somatic embryogenesis from stem thin
cell layers of Dendrobium aqueum. Biologia Plantarum 62(3): 439-450. DOI: 10.1007/s10535-018-0769-4
Rachmawati, F., Permanik, D., Mayang, R.B. & Winarto, B. 2020. Protokol perbanyakan masal Dendrobium ‘Balithi CF22-58’ secara in
vitro melalui embriogenesis somatik tidak langsung. Jurnal Hortikultura 29(2): 137.
https://doi.org/10.21082/jhort.v29n2.2019.p137-146
Ramasoot, S. 2017. Micropropagation of Rhynchostylis gigantea (Lindl.) Ridl. (Chang Phueak) through protocorm like-bodies: Effects of plant growth regulators,
characteristics of protocorm and strength culture
media. Acta Horticulturae 1167: 81-86. https://doi.org/10.17660/ActaHortic.2017.1167.12
Rose, R. & Song,
Y. 2017. Somatic embryogenesis. Encyclopedia of Applied Plant
Sciences. 2nd ed., edited by Thomas, B., Murray, B.G. & Murphy,
D.J. Massachusetts: Academic Press. pp.
474-479. https://doi.org/10.1016/B978-0-12-394807-6.00147-7
Rianawati, S., Purwito, A., Marwoto, B. & Kurniati, R. 2009. Embriogenesis somatik dari eksplan daun Anggrek Phalaenopsis sp. L. Jurnal Agronomi Indonesia 37(3): 240-248.
Sedaghati, B., Haddad, R. & Bandehpour,
M. 2018. Efficient plant regeneration and Agrobacterium-mediated
transformation via somatic embryogenesis in purslane (Portulaca oleracea L.): An important medicinal plant. Plant
Cell, Tissue and Organ Culture 136(2): 231-245.
https://doi.org/10.1007/s11240-018-1509-3
Sushmarani, Y.S., Venkatesha, M.P. & Deekska,
R.N. 2021. Influence of BAP with TDZ growth regulators on in vitro regeneration on chrysanthemum (Dendranthema grandiflora T.) cv. Marigold. Journal
of Pharmacognosy and Phytochemistry 10(2): 1171-1176.
Van Minh, T.
2019. Micropropagation of Rhynchostylis gigantea orchid by somatic embryogenic cultures. CBU
International Conference Proceedings 7: 969-974. https://doi.org/10.12955/cbup.v7.1486
Van Mint, T.
2018. Micropropagation of Phalenopsis spp. by somatic embryogenesis technique. CBU International Conference on
Innovations in Science and Education. March 21-23. Prague, Czech Republic.
Vondrakova, Z., Dobrev, P.I., Pesek, B., Fischerova, L., Vagner, M. & Motyka, V. 2018.
Profiles of endogenous phytohormones over the course
of Norway spruce somatic embryogenesis. Front Plant Sci. 9: 1283. doi:
10.3389/fpls.2018.01283
von Aderkas, P., Teyssier,
C., Charpentier, J.P., Gutmann,
M., Pâques, L., Le Metté,
C., Ader, K., Label, P., Kong, L. & Lelu-Walter, M.A. 2015. Effect of light conditions on anatomical and biochemical aspects of somatic
and zygotic embryos of hybrid larch (Larix × marschlinsii). Annals of Botany 115(4):
605-615. https://doi.org-/10.1093/aob/mcu254
Yan, R.,
Wang, C., Wang, J., Nie, R. & Sun, H. 2020.
High-efficiency somatic embryogenesis techniques for different hybrids of cut
lilies. Plant Cell, Tissue and Organ Culture 143(1): 145-157.
https://doi.org/10.1007/s11240-020-01904-4
Yanti, D. & Isda, M.N. 2021. Induksi tunas dari eksplan nodus jeruk kasturi (Citrus microcarpa bunge.) dengan penambahan 6- benzyl amino
purine (BAP) secara in vitro. Biospecies 14(1): 53-58. https://onlinejournal.unja.ac.id/biospecies/article-/view-/11192
Yeung, E.C.
2017. A perspective on orchid seed and protocorm development. Bot. Stud. 58: 33 DOI: 10.1186/s40529-017-0188-4
*Corresponding author; email: srir015@brin.go.id
|